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A B S T R A C T   

Alzheimer’s disease (AD) poses a substantial public health challenge, demanding accurate screening and diag-
nosis. Identifying AD in its early stages, including mild cognitive impairment (MCI) and healthy control (HC), is 
crucial given the global aging population. Structural magnetic resonance imaging (sMRI) is essential for un-
derstanding the brain’s structural changes due to atrophy. While current deep learning networks overlook voxel 
long-term dependencies, vision transformers (ViT) excel at recognizing such dependencies in images, making 
them valuable in AD diagnosis. Our proposed method integrates convolution-attention mechanisms in 
transformer-based classifiers for AD brain datasets, enhancing performance without excessive computing re-
sources. Replacing multi-head attention with lightweight multi-head self-attention (LMHSA), employing inverted 
residual (IRU) blocks, and introducing local feed-forward networks (LFFN) yields exceptional results. Training on 
AD datasets with a gradient-centralized optimizer and Adam achieves an impressive accuracy rate of 94.31% for 
multi-class classification, rising to 95.37% for binary classification (AD vs. HC) and 92.15% for HC vs. MCI. These 
outcomes surpass existing AD diagnosis approaches, showcasing the model’s efficacy. Identifying key brain re-
gions aids future clinical solutions for AD and neurodegenerative diseases. However, this study focused exclu-
sively on the AD Neuroimaging Initiative (ADNI) cohort, emphasizing the need for a more robust, generalizable 
approach incorporating diverse databases beyond ADNI in future research.   

1. Introduction 

Alzheimer’s disease (AD) is one of the more prevalent kinds of de-
mentia, accounting for an estimated 60–70% of all cases [1]. According 
to data from the World Alzheimer’s Survey, 78 million cases of Alz-
heimer’s disease are expected to occur by 2030, with an estimated 55 
million individuals suffering from the medical condition [2]. In addition 
to the terrible human effects AD has on those who have it and those who 
care for them, the disease carries enormous financial expenses. By 2023, 
it is anticipated that AD-related costs would reach $345 billion in the 
USA alone [3]. However, this is only the very tip of the iceberg. Our 
current situation has been identified as an AD epidemic [4], and as a 
result of the population’s age distribution being skewed towards a 
higher number of elderly individuals, associated expenditures are 
anticipated to exceed threefold by the year 2050 [3]. The condition can 
be identified by a subtly progressive deterioration in cognitive, behav-
ioral, and visuospatial abilities that are brought on by neurodegenera-
tive disorders [5]. Monitoring symptoms aids in an initial AD diagnosis, 
yet efforts are underway to develop a technique for identifying precise 

biomarkers in cerebrospinal fluid (CSF) to enhance diagnostic accuracy 
[6]. However, this method is intrusive and poses potential harm to the 
patient. Moreover, modern imaging methods like positron emission to-
mography (PET) and structural magnetic resonance imaging (sMRI) can 
be utilized to detect molecular and structural AD-related biomarkers [7]. 
The structural changes to the brain caused by AD can be understood and 
evaluated using sMRI, which is a non-invasive and effective technology. 
They are considered essential in clinical practice and contribute signif-
icantly to the diagnosis of AD pathology [8–10]. Focus has lately been 
drawn to neural networks and deep learning techniques to automatically 
identify AD and other brain disorders using sMRI data [11]. Convolu-
tional neural networks (CNNs), which have demonstrated outstanding 
ability in visual recognition, have been employed in the past to identify 
AD using sMRI [12–15]. Although convolutional processes improve 
their capacity for local knowledge transfer, they are not well adapted to 
simulate long-distance correlations. In the realm of natural language 
processing (NLP), a model by the name of Attention gained popularity as 
CNNs were being developed [16]. Utilizing the self-attention approach 
replicates the global context better than stacking hierarchical 
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convolution layers [8]. Several Attention-based Transformer techniques 
have been presented and have outperformed CNN-based techniques in a 
range of vision tasks including image classification [17–19], object 
recognition [20], and semantic segmentation [21]. Swin-Transformer 
[22] extends vision transformer (ViT) with a local self-attention mech-
anism to simplify calculations, while Transformer-iN-Transformer 
(TNT) [23] incorporates both local and global aspects of an image to 
increase classification efficiency. However, ViT application in the 
automatic classification of brain disorders is limited and using it directly 
on sMRI data would result in a significant computing overhead due to 
the intricate computations [8,24]. In the research [25]; Transformer was 
combined with CNN-based architectures to boost the performance ac-
curacy. Transformer has been challenging to employ directly since most 
brain sMRI data sources are small in comparison to established natural 
image data sources. Altay et al. [26] employed CNNs and transformers to 
successfully find preclinical AD. Using a 2D CNN, they first retrieved 
attributes using numerous 2D slices of an sMRI scan before combining 
data from all the 2D image features with a Transformer for disease 
identification. Jun et al. [27] split 3D sMRI directly into 2D slices across 
the three distinct sections to feed deep models consisting of a trans-
former and a CNN encoder. 

With the use of T1-weighted sMRI data and inspiration from con-
volutional attention [25], the goal of this research is to examine the 
Transformer’s versatility in AD diagnosis tasks. To increase its effec-
tiveness and versatility by applying spatial linkages, we present opti-
mized convolution ViT (CViT) by stacking inverted residual block and 
sandglass local feed-forward networks inside the proposed architecture, 
an efficient design that takes advantage of CNNs and Transformers to-
pologies for AD diagnosis. First, we accurately extracted 2D-slices from 
3D sMRI images and a feature extraction method is developed to convert 
2D sMRI data into a feature matrix using convolutional stem while 
considering 2D-tensor data. Then, four layers of LMHSA are used in the 
suggested framework to improve operational efficiency while lowering 
the quadratic complexity of the original self-attention mechanism [25]. 
To provide a comprehensive feature representation, the method in-
corporates depth wise convolution inside attention block which exhibits 
characteristics of high informativeness. Similarly, we redefined the 
input channel of the proposed architecture which helped to reduce 
computing complexity and simultaneous assurance of high performance. 
Later, we utilized the sandglass LFFN layer with more depth-wise 
convolution, a module that makes the process faster and more stable, 
and the AdamW optimizer with Gradient Centralization (AdamWGC) 
[28] for a more efficient and stable training process. Lastly, the frame-
work’s output was sent to the classifier for disease classification. We 
used the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset to 
validate the suggested framework, which showed that the method was 
superior in terms of algorithm performance and a variety of medical 
criteria like accuracy, specificity, sensitivity, and precision. Suggested 
methods drastically reduce the number of parameters and processing 
expenses for brain sMRI. The following is a summary of the major 
contributions made by this study.  

1. The strategy aims to improve the learning of features and better 
combine local and global information aspects of sMRI by using an 
IRU and sandglass LFFN with attention model.  

2. Alzheimer’s detection is used as the problem statement. The 
Gradient centralization technique was introduced into the AdamW 
optimizer to train the proposed model faster and consistently.  

3. The model is compact and efficient which delivers state-of-the-art 
performance with accuracy of 94.31% for multi-class classification 
and 95.37% for AD/HC binary classification on the ADNI dataset 
while using fewer FLOPs and parameters. 

2. Related works 

2.1. Self-attention and vision Transformer 

sMRI serves as a significant biomarker in the context of Alzheimer’s 
disease, offering a pivotal diagnostic tool for healthcare professionals. 
Healthcare professionals utilize sMRI scans to evaluate the degree of 
brain atrophy in patients with AD, thus enabling the determination of 
the disease’s progression stage. However, healthcare professionals 
encounter challenges in processing the extensive and intricate sMRI 
images with precision. Consequently, there has been a surge of interest 
in the exploration of computer-assisted AD diagnosis based on sMRI 
images, aiming to enhance the diagnostic efficacy of healthcare pro-
fessionals. Over the past few decades, conventional machine learning 
methods [29,30] which involve manual extraction of features primarily 
using support vector machines, have been extensively employed in the 
diagnosis of Alzheimer’s, and have even exhibited diagnostic efficacy 
surpassing that of the most healthcare professionals. CNNs [31] also 
have made a significant contribution to computer vision during the past 
few years due to their capacity to extract highly distinctive features. 
CNNs have shown promise in classifying healthy and AD brains, leading 
to their widespread use in predicting different stages of AD [30,32,33]. 
Various CNN-based algorithms, such as RNN [34], GCN [35], and 
Transfer Learning, have also been applied [36]. However, these methods 
are only focused on locale information of brain images. With the rise of 
deep learning recent studies on AD shifted towards complex deep 
learning algorithms focusing on accurate predictions for early AD 
diagnosis to assist physicians. Recently, transformer-based network 
structures, such as the ViT model, have been introduced and shown 
outstanding performance in computer vision tasks [17,18,22]. However, 
the direct use of ViT on brain images possesses the challenge of 
computational expense primarily due to hardware limitations. To inte-
grate benefits of ViT by reducing the computational burden some re-
searchers have experimented with transformer-based networks in 
medical image analysis, including AD diagnosis, and found that they can 
achieve equal or better performance than CNN models like Resnet [8,37, 
38]. However, the use of large datasets may not accurately represent the 
performance of transformers on small datasets in AD classification. 
Furthermore, the advancement of deep learning has led to significant 
advancements in merging convolution and attention mechanism in 
computer vision tasks [25,39]. These models were a new architecture 
that mixes the mechanism of self-attention with that of convolution and 
introduced some performance optimizations with lesser FLOPs than 
original ViTs. Few ViT networks have been proposed and have achieved 
impressive results in AD diagnosis tasks [8,38,40,41]. For instance, J. 
Zhu et al. [8] introduced efficient self-attention with structural distilling 
mechanism using sagittal sMRI in 2023, and later another study Hoang 
et al. [42] proposed transfer-learning ViT method using sagittal sMRI in 
2023. Recently, Manzari et al. proposed MedViT [43] for medical im-
ages combing convolution and attention. In other studies, conducted in 
2022 Kushol et al. [44] effectively employed the utilization of frequency 
an image domain features extracted from coronal 2D slices within a ViT 
architecture to achieve state-of-art performance in AD classification. 
Their work demonstrates the capacity of two transformers, one from the 
image domain and the other from the frequency domain, to capture 
global and local context as well as spatial features. These contributions 
have greatly influenced the field of medical image analysis and have 
contributed to the progress of ViT learning. While these architectures 
have exhibited remarkable performance, they still lack addressing 
computational burden of ViT. However, for the analysis of medical im-
ages, which may involve significantly larger inputs, a more computa-
tionally efficient approach is imperative. Additionally, 
convolution-attention offers a solution to the limited data problem in 
the medical imaging field, providing new inspiration for further ad-
vancements. In this paper, instead of just comparing the adversarial 
robustness of CNNs and ViTs without considering architecture design, 
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we go a step further and propose a robust optimized hybrid architecture. 
We incorporate a novel optimization technique into the Transformer 
architecture to enhance the resilience of Transformer models with 
reduced computing resources and auxiliary training for AD diagnosis. 

2.2. Depth-wise convolution 

The process of regular convolution and depth-wise convolution is 
illustrated in the diagram presented in Fig. 1 above. Unlike traditional 
convolution, which operates on all input channels independently, depth- 
wise convolution performs separate convolutions for each input chan-
nel. A single filter is used in depth-wise convolution to process each 
input channel separately, producing an output channel set that is equal 
to the number of input channels. This approach reduces the computa-
tional cost significantly compared to standard convolution, as it reduces 
the number of parameters and operations [12]. After performing 
depth-wise convolution, it is common to proceed with point-wise 
convolution, where output of the depth-wise convolution is processed 
using 1x1 filters. The point-wise convolution helps to capture channel 
interactions and mix information across channels. Overall, depth-wise 
convolution is an effective technique for reducing computational 
complexity while retaining information flow in convolutional neural 
networks, making it suitable for models with limited resources or when 
efficiency is a priority. Howard et al. [45], introduced the MobileNet 
architecture, which incorporates depth-wise separable convolutions, in 
their paper. This network has excellent mobile device compatibility and 
high computational efficiency. Since then, a few additional experiments 
have used depth-wise convolutions to build effective networks [46–48]. 
This motivates us to think about enhancing the localization of the 
network and ensuring its efficacy by including more depth-wise con-
volutions in the suggested model. 

3. The proposed method 

3.1. Overall architecture 

In this paper, we propose a hybrid transformer design that adds extra 
convolution processes to the transformer’s core portions to capture more 
locality, which improves classification efficiency and precision on small 
datasets. Fig. 2 presents an overview of the proposed model for Alz-
heimer’s diagnostic task. In this work, a multi-stage architecture is used, 
where each stage utilizes a similar architecture made up of a 
convolution-ViT(CViT) block with inverted residual unit (IRU); Light-
weight Multi-Heat Self-Attention (LMHSA) and Local Feed-forward 
Network (LFFN). Instead of employing a conventional tokenization 
approach such as ViT, which involves linearly projecting each image 
patch into visual tokens by dividing it into non-overlapping, equally 
sized patches, we utilize a convolution token embedding block. This 
block consists of 3x3 convolutions, followed by ReLU [49] activation 
and a batch normalization layer. This approach allows for efficient 
extraction of local information, taking inspiration from the research 
referenced in Ref. [25], and [50]. By incorporating the described 
convolution token embedding block, the model’s capacity is enhanced in 

terms of capturing low-dimensional local information and preserving 
the patch edge data. This block helps prevent the loss of important de-
tails and enables the model to better retain and utilize fine-grained in-
formation at a local level. The tokens are then run through a new 
transformer block made of IRU; LMHSA; LFFN and extended channels 
blocks without the position embedding unlike in original ViT. Convo-
lution IRU, LMHSA, and LFFN blocks efficiently capture both neigh-
borhood knowledge as well as long-range relationships while reducing 
the computational cost and increasing versatility of the transformer 
architecture. The last layers of the model involve batch normalization, 
followed by global average pooling, and a classification layer that uti-
lizes SoftMax activation. 

The suggested model is more suited for tackling image classification 
problems using limited datasets since it has a good ability to capture 
local and long-range information with fewer parameters. Additionally, 
positional embedding is not needed for this model’s training purposes. 
In this study, we start by utilizing the CViT block as the main framework 
and showcase the application of a new projection method. Subsequently, 
we delved into a thorough analysis of the IRU, LMHSA, and LFFN block, 
focusing on their effective design to improve the overall performance of 
the network. 

3.2. Inverted residual unit 

The Inverted Residual Block, also referred to as the MBConv Block, is 
a specific type of residual block employed in vision models to improve 
efficiency. It was initially introduced in the MobileNet [45] CNN ar-
chitecture and has been subsequently employed in various 
mobile-optimized CNNs. In contrast to the conventional Residual Block, 
which typically follows a wide-narrow-wide structure with the number 
of channels, the Inverted Residual Block adopts a narrow-wide-narrow 
configuration. It starts with a 1x1 convolution to widen the input, fol-
lowed by a 3x3 depth wise convolution equipped with skip connection 
ensures efficacy while reducing computational burden. This promoted 
feature reuse and decreased the model’s parameter count by ensuring 
that uniform weights distribution across multiple clusters of pixels in an 
image. Finally, a 1x1 convolution is used to decrease the number of 
channels so that the input and output can be added. It gets over the 
drawbacks of traditional positional embedding and the limits of tradi-
tional Vision Transformers in capturing local relationships and struc-
tured data that conventional CNNs capture inside individual patches. 
The residual block and the recommended IRU network have a very 
similar appearance. The inverted residual block consists of a depth-wise 
convolution, a projection layer, and an expansion layer. The IRU, 
however, features a unique shortcut connection location that improves 
its performance. Mathematically, it is represented as: 

IRU(X)=Conv(F (Conv(X)) 1  

F (X)=DWConv(X) + X 2 

Let X be an input tensor of size X ∈ RH×W×d,where H × W represents 
the resolution of the current stage input and, d represents the dimension 
of the features. The function DWConv(.) represents the depth-wise 

Fig. 1. The visual representations of a) standard convolution and b) depth-wise convolution.  
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convolution operation. 

3.3. Lightweight multi-head self-attention 

Fig. 3 depicted the various core blocks along with our proposed 
model. Our method consists of a k × k depth-wise convolution with a 
stride of k which minimizes the spatial size of the matrices K and V. The 
purpose of employing this technique is to minimize the computational 
burden involved in attention, thereby reducing the overall computa-
tional load. By utilizing fewer matrices produced by a convolution 
method, the quantity of self-attention computations is decreased. In 
original self-attention module, the input X ∈ Rn×d is linearly trans-
formed into query Q ∈ Rn×dk , key V ∈ Rn×dk and value, K ∈ Rn×dv , here, 
n = H × W represents the number of patches. For simplicity, we omit the 

reshape operation form H × W × d to n × d tensors. The dimensions, dk 
and dv represent the sizes of the input key, query, and value, respec-
tively. Afterward, the self-attention module is used as follows: 

Attn= Softmax
(
QKT
̅̅̅̅̅
dk

√

)

V (3) 

Additionally, we introduce a relative location bias B inside every self- 
attention module, and the associated lightweight attention is described 
as: 

Light Attn(Zi)= Softmax
(
QK′T
̅̅̅̅̅
dk

√ +B
)

V′ (4)  

Fig. 2. Proposed optimized Convolution-ViT for Alzheimer’s diagnosis, a) Overall architecture b) convolution transformer encoders with IRU, LMHSA and LFFN 
block, c) LMHSA block with additional depth-wise convolution and d) proposed sandglass LFFN block with skip connection. 

Fig. 3. A comparison between various core blocks a) ConvNext block b) ViT core block c) Ours (Convolution-Attention with IRU, LMHSA and LFFN) block.  
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3.4. Local feed-forward network 

The final layer of each block substitutes an expansion layer for the 
traditional MLP in equation (5) of the Vision Transformers; Subse-
quently, a depth-wise convolution is applied, followed by a projection 
layer. Two linear layers are separated from one another in the original 
ViT by a GELU activation. Instead of GELU we employ ReLU [49] as the 
activation function because the more popular GELU [51] is frequently 
under supported by certain inference deployment platforms [52], as 
well as substantially slower than ReLU. Moreover, images dimension is 
multiplied by 4 in the first layer of LFFN and is decreased by the same 
number in the second layer: 

FFN(X)=GELU(XW1 + b1)W2 + b2 (5) 

In this context, W1 ∈ Rd×4d represents the weight matrix of first linear 
layer, and W2 ∈ R4d×d represents the weight matrix of the second linear 
layer. Additionally, b1 and b2 denote the bias terms associated with the 
respective layers. To enhance the transformers’ capacity to achieve lo-
cality in both higher and lower dimensions simultaneously, we suggest 
the LFFN block. This block incorporates a sandglass block with addi-
tional depth-wise convolutions into the original FFN of transformers. 

The proposed LFFN resembles a residual block, which includes an 
expansion layer, followed by a depth-wise convolution, and finally a 
projection layer. The LFFN block carries out a series of actions. First 
rearranging the series of tokens into a 2D lattice will accurately reflect 
the feed-forward network, which is applied positionally to a sequence of 
tokens Zi. The following equation (10) represent the final reshaped 
features: 

LFFN
(
Xd1
i

)
=DWConv(zi) (6)  

Xl1i =Conv
(
Xd1
i

)
(7)  

Xd2
i =DWConv

(
Xl1i

)
(8)  

Xd2
i =Conv

(
Xd2
i

)
(9)  

Xd3
i =DWConv

(
Xd2
i

)
+ Zi (10) 

Local information is extracted without almost any additional pro-
cessing expense using the depth-wise convolution. The logic for the use 
of shortcuts is comparable to that of original residual networks, which 
can enhance the gradient’s capacity to propagate between layers. In our 
research, we demonstrate that this shortcut aids the network in pro-
ducing better outcomes. Overall, these components can be represented 

mathematically as: 

X′
i = IRU(Xi− 1) (11)  

Zi =LMHSA
(
LN

(
X′
i

))
+ Xii (12)  

Xd3
i =DWConv

(
Xd2
i

)
+ Zi (13)  

where X′
i and Zi denote the output features of the IRU and the LMHSA 

module for block i respectively. LN refers to Layer Normalization. 

3.5. Gradient centralization 

Fig. 4 above illustrates the gradient centralization (GC) operation. 
Gradient descent with a controlled loss function is a technique known as 
GC. An important factor in enhancing a Deep Neural Network’s (DNN) 
performance is model optimization. Optimization can be done by Z- 
score standardization on the network’s activations or using methods like 
Batch Normalization and Weight Standardization. For optimization in 
our approach, we employed a novel strategy called GC [28]. Unlike 
existing methods that primarily focus on activations or weights, GC 
directly operates on gradients by centralizing the gradient vectors to 
have zero mean. By adding a new restriction to the weight vector, it 
places such limits on the loss function. By controlling the weight space as 
well as the output feature, it enhances the DNNs’ capacity for general-
ization. Additionally, it increases the gradient’s and loss function’s 
Lipshitzness, stabilizing the network’s training process and boosting its 
effectiveness. The utilization of GC provides benefits in both the output 
feature space and the weight space regularization. This dual regulari-
zation contributes to enhancing the model’s generalization performance 
while mitigating the risk of overfitting on the training data. As a result, 
the gradient of the weights becomes more predictable and stable 
enabling quick model training. Furthermore, it prevents gradient ex-
plosion, which stabilizes the model training procedure. It is simple to 
incorporate into existing gradient based DNN optimization techniques 
like Adam and SGDM. 

4. Experimental setting 

4.1. Studied dataset 

The dataset utilized in this investigation was retrieved from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, available 
online at (http://adni.loni.usc.edu). To aid in the early detection of AD 
and the investigation of biological markers for the disorder, the ADNI 

Fig. 4. a) Drawing of a gradient centralization (GC) map b) examples of the GC operation on the weight of gradient matrices. The gradient column mean of the 
gradient matrix is calculated using GC, and each column/slice is centralized to have a mean of zero [28]. 
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offers researchers worldwide access to a publicly available AD database 
[53]. We evaluated 315 HC, 370 MCI, and 390 AD samples for this study. 
All sMRI scans were performed at a 3T resolution, and the resulting 
images were T1-weighted which is comprised of 
magnetization-prepared rapid-acquisition gradient-echo sequences. The 
obtained images had a spatial resolution of 182 × 218 × 182 with a 
voxel size of 1 × 1 × 1 mm3. Finally, for the purpose of subsequent 
model training, the process involved the division of each 3D sMR image 
into 2D images by means of slicing and tiling, thereby achieving a 
dimension of 224 × 224 pixels. Table 1 presents the demographic and 
clinical information of the participants, including their gender, age, 
MMSE results, and clinical dementia rate (CDR) scores. The ages of the 
three subject combinations were evenly distributed. The MMSE scores of 
the HC group showed slight differences, in contrast to the considerably 
greater variations observed in the scores of the remaining two group. 

4.2. Dataset preprocessing 

Fig. 5 above shows the sample slice used in this study. First, the 
centre of the anterior commissure (AC) - posterior commissure (PC) line 
was chosen as the new location for all raw sMRI data. Then, for SPM 
[54], we utilized the computational anatomy toolbox (CAT12, accessible 
at http://www.neuro.uni-jena.de/cat/), which includes several 
morphometry techniques, including surface-based morphometry (SBM) 
and voxel-based morphometry (VBM). Our preprocessing procedures 
included the following steps: removal of non-brain tissue, such as the 
skull and neck, etc. Normalization to the EPI template, modulation, and 
spatial smoothing using an 8 mm full-width at half-maximum (FWHM) 
Gaussian filter. 

4.3. Training setup 

To evaluate the efficacy of the proposed optimized model, we 
compared it with other baseline CNN and Transformer-based networks, 
including ResNet-50 [31], DensNet121 [55], and various versions of 
CMT [25]. This comparison aimed to assess the performance and ca-
pabilities of the proposed model in relation to these established archi-
tectures. To identify Alzheimer’s brain sMRI data, CViT hybrid model 
was utilized. We randomly rearranged the images and conducted all 
experiments by dividing the data into 10% for testing and 90% for 
training. Additionally, 20% of the training set was set aside as a vali-
dation set. The initial learning rate was set to 0.003 and 200 epochs to 
train the model and it was intended to become zero after a single cycle of 
the cosine. CViT models were trained using the AdamW and AdamWGC 
[28] optimizer with a weight decay of 0.03 and a batch size of 32. The 
optimal value for the batch size of models was determined by identifying 
the ideal point between the batch sizes of 8 and 128, utilizing increments 
of the power of 2. As we move from larger batch sizes to smaller ones, we 
notice that for batch size 32 have the least error rate. According to this 
research, large-batch approaches tend to converge to sharp minima of 
the testing and training functions, and sharp minima result in less 
effective generalization. Small-batch techniques, on the other hand, al-
ways lead to flat minima. The cross-entropy loss makes sure that the 
network training goes smoothly. The implementation uses ADNI Dataset 

[56] and deals with Alzheimer’s diagnosis as multi-class classification 
problem statement. We used 3D structural sMRI scans of 1075 in-
dividuals (390 AD, 370 MCI, and 315 HC) to construct our 2D model 
with balance dataset. Data augmentation is used to increase amount of 
data during training phase to make the model to gain more information 
about the Alzheimer’s atrophy present in the sMRI images. We specif-
ically excluded a colour jitter, Gaussian blur, and solarization image 
augmentations and opted instead for random horizontal flip, vertical 
flip, height shift, and random zoom augmentations. Utilizing the same 
training methodology as [25], the suggested approach for classification 
was executed in Python 3.9.13 using the Keras library, which relies on 
Tensorflow 2.11.0. The process was then conducted on a computer 
equipped with an NVIDIA RTX3090 GPU and tested in the Ubuntu 
20.04.6-x64 operating system. 

4.4. Network architecture 

Following the fundamental CMT settings, we design the suggested 
model architectures. The detailed architecture of the proposed model is 
presented in Table 2. Firstly, the convolutional layer with a kernel size of 
3 × 3 and a stride of 2 were utilized as convolution stem, which pro-
duced 32 enhanced channels. Additionally, a Batch Normalization layer 
is introduced for stable training for convolutional stem. The next step is 
to utilize an inverted residual unit inside CViT blocks with a depth wise 
convolution of kernel size of 3 × 3. The number of LMHSA blocks are 
individually set to 3 for each block respectively. In the LMHSA block, 
which is used for convolution projection, the size of the convolution 
kernel is set to 3, and the number of heads is set to 1,2,4,8 with reduction 
rates 8,4,2,1 respectively while setting the expansion ratio as 4. 

4.5. Evaluation 

The anticipated results for the diagnostic tasks are represented by the 
abbreviations TP (True Positive), TN (True Negative), FP (False Posi-
tive), and FN (False Negative). A positive sample, as defined by TP, is 
one that was accurately projected to be positive. A sample that was 
appropriately identified as negative is referred to as TN. A negative 
sample that was mistakenly labeled as a positive sample is indicated by 
the symbol FP. The abbreviation FN denotes inaccurate prediction of a 
positive sample as a negative sample. We employ the commonly used 

Table 1 
Information on the collected individuals’ demographics.  

Groups Gender (M/F) Education Age (Years) MMSE CDR APOEƐ4 FAQ 

AD 160/155a 15.47 ± 3.08 74.07 ± 7.5b 24.54 ± 2.25b 3.29 ± 1.7b 0.88 ± 0.70 10.30 ± 7.05b 

MCI 200/170 15.52 ± 3.17 73.53 ± 7.6 27.42 ± 1.68 1.33 ± 0.74 0.65 ± 0.64 2.98 ± 3.50 
HC 250/140 16.26 ± 3 74.76 ± 4.3 29.16 ± 0.95 0.04 ± 0.16 0.24 ± 0.46 0.12 ± 0.67 

Values are means or numbers ± standard deviations. AD: Alzheimer’s disease; MCI: Mild cognitive Impairment; CN: Normal Control; CDR: Clinical Dementia Rate; 
MMSE: Mini Mental state Examination. FAQ: Functional Activities Questionnaires. 

a Group-level two-sample t-tests are conducted for age, education, MMSE, FAQ, and CDR. 
b group-level chi-square tests are conducted for gender. 

Fig. 5. Illustration of Coronal, Sagittal and Axial slice of sMRI ADNI dataset 
used in the experiment. 
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metrics of accuracy, specificity, sensitivity, precision, F1 score, and 
receiver operating characteristic curve (ROC curve) to assess the per-
formance of our diagnostic model. Accuracy is the percentage of 
correctly diagnosed test samples among all test samples, as demon-
strated in relation (14). 

Accuracy=
TP+ TN

TP+ TN + FP+ FN
(14) 

The proportion of correctly classified samples, as shown in equation 
(15), represents specificity. 

Specificity=
TN

TN + FP
(15) 

The definition of sensitivity, as depicted in equation (16), measures 
the ability of a model to accurately identify AD patients among all the 
positive samples. 

Sensitivity=
TP

TP+ FN
(16) 

Precision, as expressed in equation (17), quantifies the proportion of 
correctly predicted positive observations out of all the expected positive 
observations. 

Precision=
TP

TP+ FP
(17) 

The F1 score, as demonstrated in equation (18), is computed by 
taking the weighted average of precision and recall. It combines both 
measures to provide an overall evaluation of the model’s performance. 

F1 score= 2
(
Precision× Sensitivity
Precision+ Sensitivity

)

(18) 

An ROC curve graphically represents the performance of a classifi-
cation model across various classification thresholds. The ROC curve 
illustrates the relationship between two variables: The first parameter, 
True Positive Rate (TPR), is also commonly referred to as recall and is 
represented by equation (19). which quantifies the proportion of 
correctly predicted positive instances (true positives) out of all the 
actual positive instances. 

TPR=
TP

TP+ FN
(19) 

The second parameter, False Positive Rate (FPR), is defined in 
equation (20). which measures the proportion of incorrectly predicted 

negative instances (false positives) out of all the actual negative in-
stances. It represents the rate at which the model incorrectly identifies 
negative cases as positive. 

FPR=
FP

FP+ TN
(20)  

5. Experimental results and analysis 

Using limited ADNI Alzheimer’s datasets, we assess the proposed 
optimized model in this section. Additionally, to validate the design of 
the suggested architecture, we also conducted a comparative and 
investigative study on existing baseline CNN, ViT and CMT model. 

5.1. Demographics analysis 

In the comparison between AD/HC/MCI, MCI/HC, and the com-
parison between MCI/AD, there were no statistically significant differ-
ences in age between the groups. However, in combinations of all 
groups, there was a significant variation in Mini-Mental State Exami-
nation (MMSE) (P ≤ 0.05) and Clinical Dementia Rating (CDR) (P ≤
0.05). AD exhibits a higher percentage of males, in contrast to HC which 
shows a similar percentage of females’ population. On the other hand, 
MCI have a slight variation of females and males’ population. The 
prevalence of males in AD is 64.10%, while the prevalence of females in 
MCI is 45.94%. In contrast, the prevalence of male and females in HC is 
similar with 50.79% and 49.20%, respectively. All numerical and clin-
ical data, including the APOEƐ4 positive rate, were expressed as the 
mean value plus or minus the standard deviation. Variables included 
education, MMSE, and CDR. Group-level two-sample t-tests were per-
formed for age, education, MMSE, and CDR, while group-level chi- 
square tests were conducted for gender. These variables have been 
comprehensively described and analyzed in Table 1 and Fig. 6 below 
respectively. From the figure we can say that education level and APOE4 
greatly influence the clinical dementia rate on the patients. Similarly, 
person education level linearly related to MMSE score; while individuals 
age increases their chance of AD is increase based on the presence of 
APOE4 gene in the individuals. 

5.2. Performance comparison of the proposed method with different 
models on ADNI dataset 

The proposed method was evaluated using the ADNI database, spe-
cifically for a multi-class classification task involving AD, MCI, and HC 
individuals. The results of the proposed method were compared with 
other models trained on the same dataset, namely ResNet50, VGG16, 
VGG19, DenseNet121, baseline ViT and CMT varieties. The evaluation 
was performed using metrics: accuracy (ACC), sensitivity (SEN), speci-
ficity (SPE), precision (PRE) and area under receiver operating charac-
teristic (AUROC). 

The proposed model can be partitioned into two components: series 
of convolution layers (3 × 3 filters) with stride 2 for a patch embedding 
from input sMRI slices and Transformer module to preserve global in-
formation’s. The classification performance of each model was 
compared for the multiclass classification tasks setting same training 
parameters for fair comparison, and the results were presented in 
Table 3, Fig. 7, and Fig. 8. Figs. 7 and 8 represent confusion matrix, the 
ROC curve, Precision-Recall curve, loss, and accuracy plot for two op-
timizers respectively. The effectiveness of the proposed model was 
demonstrated in both binary classification scenarios AD/HC; MCI/HC 
and multi-class classifications. According to the evaluation, by incor-
porating IRU, LMHSA and LFFN in our method achieved the highest 
accuracy rate of 94.31%, outperforming CNN, baseline ViT and CMT 
variant in terms of accuracy while reducing the computational 
complexity and model parameters. VGG16 achieved an accuracy rate of 
90.15%, which was slightly higher than ResNet50 accuracy rate 89.24%. 

Table 2 
Overall architecture of proposed model for Alzheimer’s classification, with the 
output size matching the input resolution of 224 × 224. Convolutional layers 
and optimized ViT blocks are indicated within brackets along with the number 
of stacked blocks.  

Stage Output 
Size 

Layer Name CViT 

Stem 112 × 112 Convolutional layer 3 × 3, 32, Stride 2 
Block1 56 × 56 Patch Embedding 2 × 2, 64, stride 2  

CViT Block [3 × 3, 64, H1 = 1, k1 = 8, R1 =
4] × 3 

Block2 28 × 28 Patch Embedding 2 × 2, 128, stride 2  
CViT Block [3 × 3, 128, H1 = 2, k1 = 4, R1 =

4] × 3 
Block3 14 × 14 Patch Embedding 2 × 2, 256, stride 2  

CViT Block [3 × 3, 256, H1 = 4, k1 = 2, R1 =
4] × 3 

Block4 7 × 7 Patch Embedding 2 × 2, 512, stride 2  
CViT Block [3 × 3, 512, H1 = 8, k1 = 1, R1 =

4] × 3  
1 × 1 Global Average 

Pooling 
1 × 1512   

FC 3   
#Params 15.9M   
#FLOPs 2.2 B  
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Similarly, CMT-S performs better as compared to the other variants with 
accuracy rate of 88.01%. However, the proposed method surpassed 
them in terms of accuracy rate and other evaluation criteria as present in 

results Table 3. The proposed method demonstrated higher sensitivity 
and precision; for example, it achieved a sensitivity of 97.14% and 
precision of 95.02%, which were both higher than the baseline CNN, ViT 

Fig. 6. Visualizing demographic and clinical density maps: Distributions of age, CDR MMSE scores, and APOE4 scores are shown in (a), (b), (c) and (d). To show the 
relationship between AD stages and various indicators in the clinical AD we depicted the violin plot: (e), (f), (g), (h) and (i). 

Table 3 
Multiclass classification results (AD/MCI/HC) for different models on ADNI dataset.  

Models Image Size Param (M) FLOPs (B) ACC SEN SPE Precision Recall F1-Score 

VGG-16 [58] 224X224 134.2 15.4 90.15 89.74 94.23 92.01 90.25 90.86 
VGG-19 [58] 224X224 139.5 19.6 86.25 93.10 87.51 89.04 88.07 91.02 
DensNet-121 [55] 224X224 7.03 2.8 87.15 87.17 93.18 89.25 88.41 88.19 
Resnet-50 [31] 224X224 23.5 3.8 89.24 88.07 93.13 90.37 89.11 89.20 

ViT-S [17] 224X224 50 22 78.47 82.56 74.06 78.55 78.47 78.42 
ViT-B [17] 224X224 86 35.1 81.09 72.87 89.96 82.31 81.09 80.99 
ViT-L [17] 224X224 303 122.9 83.90 88.76 78.66 84.12 83.9 83.84 

CMT-Ti [25] 160X160 8.2 0.65 74.87 87.14 74.38 83.01 74.33 85.02 
CMT-XS [25] 192X192 14.09 1.57 85.41 91.03 84.71 87.02 85.35 88.97 
CMT-S [25] 224X224 25.1 4.08 86.05 92.17 85.31 88.03 86.43 90.05 
CMT-B [25] 256X256 44.6 9.42 88.01 81.41 95.43 89.12 88.54 85.09 
Ours (AdamW) 224X224 15.9 2.2 92.07 95.43 92.21 93.08 92.54 94.24 
Ours (AdamWGC) 224X224 15.9 2.2 94.31 97.14 94.11 95.02 94.55 96.06 

FLOPs: Floating point operations; ACC: Accuracy, SEN: Sensitivity; SPE: Specificity. 

U. Khatri and G.-R. Kwon                                                                                                                                                                                                                    



Computers in Biology and Medicine 171 (2024) 108116

9

and CMT models. However, CMT-B and VGG16 showed a slightly better 
specificity score rate of 95.43% and 94.23% respectively. We trained our 
model with AdamWGC optimizers which demonstrated better and 
smooth training process and achieved excellent performance, especially 
training and validation loss reduced greatly as compared to AdamW 
optimizer (Fig. 8(d)). Specifically, GC operates directly on gradients and 
removed the mean from the gradient vectors and centralized them to 
have zero mean. Which improves the loss function with a constraint on 
weight vectors, and regularizes both weight space and output feature 
space and helps to train the model smoothly [28]. 

Overall, the self-attention-based models exhibited the best classifi-
cation performance, followed by the CNN-based models. Fig. 8 shows 
the application of Grad-CAM (Gradient-weighted Class Activation 
Mapping) [57] on the AD identification task. In general, the utilization 
of GC in the AdamW optimizer resulted in an increased accuracy. 
Comparing the performance of the two optimizers, the AdamWGC 
achieved a higher accuracy rate of 94.31% compared to the accuracy 
rate of 92.07% achieved by an AdamW. This suggests that incorporating 
GC into the AdamW optimizer had a positive impact on the model’s 
ability to classify AD brain images correctly, leading to improved ac-
curacy by 2.24%. Similarly, notable improvements can be observed in 
terms of micro average AUROC by 5 % (Fig. 7(b) and Fig. 8(b)) and the 
area under precision-recall by 8% (AUPR; Fig. 7(c) and Fig. 8(c) curve. A 
higher AUROC and AUPR indicates better discrimination and overall 
performance of the model in distinguishing between positive and 
negative instances. Overall, the utilization of GC in optimizer likely 
contributes to improved classification performance and increased 
separability of the predicted AD classes. Furthermore, the 
precision-recall curve, which depicts the trade-off between precision 
and recall, shows substantial improvement when GC is incorporated into 

optimizer while training the proposed convolution-attention model. The 
precision-recall curve is especially informative in situations where data 
imbalance exists or when the focus is on positive instances. The 
enhancement observed in the precision-recall curve suggests that the 
model achieves higher precision for a given level of recall, indicating 
improved performance which correctly identifying positive instances 
while minimizing false positives rate. In summary, applying GC to the 
AdamW optimizer yields significant improvements in both AUC and the 
precision-recall curve, highlighting the enhanced discrimination and 
classification performance of the model for Alzheimer’s diagnosis task 
using ADNI database. 

5.3. Ablation study 

To examine the impact of design choices on the multiclass classifi-
cation of AD using the proposed model, we conducted an ablation 
experiment. This experiment aimed to investigate the effects of different 
block sizes on model performance and computational complexity. For 
fair comparison, how number of blocks affect the performance we keep 
all parameters same, and we only change the number of blocks. We 
tested three versions of our method: as shown in Table 4. All models 
were trained using the same training setup with AdamWGC optimizer. 
The results are presented in Table 4. It can be observed that the accuracy 
of classification is comparable between block size 3 and 4 but the 
computational complexity of the model increased largely. More specif-
ically, as the total number of attention blocks goes from 12 to 16, the 
classification accuracy of model decreases from 94.31% to 91.74%, 
resulting in a decrease of 2.57% overall accuracy with 8.3% increase in 
computation cost. Nevertheless, the trend of enhancing classification 
performance also decreases while reducing the number of blocks into 8. 

Fig. 7. Visualizing model performance on AdamW optimizer: a) confusion matrix for multi-class classification of Alzheimer’s disease diagnosis, b) ROC curves for 
multiclass classification tasks. To evaluate the overall effectiveness of the model, we utilize the area under the curve (AUC). Better performance is represented by a 
larger area, c) Precision-Recall plot for evaluating the model. The larger area indicates better performance, d) loss and accuracy graph on training/validation dataset. 
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For instance, while the total number of blocks reduced to 8, the accuracy 
was decreased to 88.53%. Consequently, considering the overall 
computation costs and benefits, we set attention blocks size as 3 in each 
step in our experiments. Our findings indicate that the small version 
with three blocks in each attention-head achieved the highest classifi-
cation performance with less parameters and computational complexity 
for AD data set as compared to others. We believe that a block size of 
three captures the most effective and informative features of sMRI im-
ages by extracting brain regions with corresponding AD atrophy. Larger 
block sizes result in overly generalized information, leading to compu-
tationally complex and loss of details. Conversely, small blocks sizes can 
compromise the semantic information of the sMRI scan even though it is 
computationally efficient. 

5.4. Performance comparison with existing state-of-art-machine learning, 
CNN methods 

Several recent literary works have examined the neuroimaging 
technique for discriminative classification of AD, focusing on patients 
with MCI and the identification of individuals with Alzheimer’s from 

healthy controls. Nevertheless, making a direct comparison with the 
current state-of-the-art methods is challenging due to the utilization of 
different datasets and classification techniques in most literary works, 
both of which have had a significant impact on performance accuracy. 
By employing various classifiers architectures for the discrimination 
between AD and HC, previous literary works have reported different 
accuracy ranges as depicted in Table 5. These literary works have 
employed the ADNI database to evaluate their proposed methods, and it 
is evident that the classification accuracy has been influenced by the 
number of subjects. For a fair evaluation we conducted a comparison of 
our model’s classification results with previous studies using the ADNI 
database. Initially, we conducted a comparison between our proposed 
model and traditional machine learning methods. In the study by Liu 
et al. [59] introduced a whole-brain hierarchical network that extracted 
brain features from regions of interest (ROI) and employed the multiple 
kernels boosting (MKBoost) algorithm for classification. Using a single 
structural MRI modality dataset, they achieved accuracy rates of 94.65% 
for distinguishing AD/HC, and 85.79% for differentiating MCI/HC. By 
proposing an SVM-based method that integrated spatial-anatomical in-
formation and employed a group lasso penalty to induce sparsity Sun 

Fig. 8. Visualizing model performance on AdamWGC optimizer: a) confusion matrix for multi-class classification of Alzheimer’s disease diagnosis, b) ROC curves for 
multiclass classification tasks. To evaluate the overall effectiveness of the model, we utilize the area under the curve (AUC). Better performance is represented by a 
larger area, c) Precision-Recall plot for evaluating the model. The larger area indicates better performance, d) loss and accuracy graph on training/validation dataset. 

Table 4 
Multiclass classification results (AD/MCI/HC) on different block sizes for ADNI dataset.  

No. of blocks Image Size #Parameters #FLOPs ACC SEN SPE Precision Recall F1-Score 

2,2,2,2 224 × 224 11.8 M 1.4 B 88.53 86.05 91.21 88.70 88.53 88.53 
3,3,3,3 224 × 224 15.9 M 2.2B 94.31 97.14 94.11 95.02 94.55 96.06 
4,4,4,4 224 × 224 21.8 M 2.6B 91.74 85.27 96.65 91.39 90.74 90.73  
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et al. [60] achieved comparable outcomes. Their approach yielded ac-
curacy rates of 95.1% for distinguishing AD/HC and 70.80% for 
differentiating MCI/HC. 

Furthermore, we conducted a comparison between our model and 
existing deep learning architectures. Lian et al. [61] proposed a hier-
archical CNN based method that captured anatomical atrophy locali-
zation in structural MRI scans of the brain. They achieved accuracies of 
90.30% for AD vs HC with 82.40% sensitivity, and 96.50% specificity for 
binary classification tasks. A 3D deep learning system was created by Li 
et al. [62] based on structural MRI images for the detection of Alz-
heimer’s disease in individuals. For AD over HC and MCI over HC, their 
model had accuracy rates of 93.20% and 80.40%, respectively. Liu.J 
et al. [46] designed a CNN-based architecture using the OASIS dataset 
and obtained accuracy rates of 78.02% for multiclass classification, 
84.65% for distinguishing MCI/HC, and 75.32% for distinguishing 
AD/MCI when applied to the ADNI dataset. They made further en-
hancements to their approach by employing a deep separable convolu-
tion model, which helped reduce the number of parameters. As a result, 
they achieved an accuracy of 77.79%. In order to emphasize the features 
extracted specifically from the segmented region of the hippocampus, 
Liu.M et al. [63] devised an architecture that integrated 3D DenseNet 
and a multi-task CNN. Their model achieved accuracy rates of 88.90% 
for distinguishing multi-class AD/MCI/HC and 76.20% for differenti-
ating MCI/HC. 

In comparison to these previous CNN base studies, our proposed 
model achieved competitive or improved classification accuracies, 
demonstrating the efficacy of our approach in AD diagnosis. Table 5 
provides a summary comparison of different studies, including the 
proposed depth wise convolution method by Liu. et al. [46], in terms of 
classification performance. The results indicate that our proposed 
method tends to achieve high discrimination accuracy while utilizing a 
reduced number of parameters. The reduced number of parameters 
suggests that the proposed method can achieve competitive classifica-
tion accuracy while being computationally efficient for clinical diag-
nostic of Alzheimer’s. 

5.5. Performance comparison with existing state-of-art-transformer 
methods 

In this section, we set out to evaluate the effectiveness of our pro-
posed framework by comparing its performance with recent ViT based 
methods in the classification and diagnosis of AD. Due to the limited 
availability of ViT-based AD research and the absence of multi-class 
classification reports in the literature, our comparison focuses on bi-
nary classification. The results are detailed in Table 6, showcasing our 
findings alongside those reported in existing studies. Each investigation 
is accompanied by information on the methodology employed and the 
recorded performance measures. 

Specifically, we compare our results with attention-based method-
ologies introduced by Xin et al. [65], BranInf proposed by Zhu et al. 
[66], Conv-Swin by Hu et al. [67], Addaformer by Kushol [44], Zhu et al. 
[8] and Zhang and Kalavati et al. [40], as they utilized sMRI images from 
the ADNI database in their experiments. Hu et al. [67] employed a 
Conv-Swin transformer model, combining VGG16 for convolutional 
feature extraction and Swin transformer for feature fusion, achieving an 
accuracy rate of 93.56% for AD/HC and 79.07% for HC/MCI. Zhu et al. 
[8] introduced a BranInf model with ProbSpares attention as the main 
ViT backbone, focusing on enhancing the efficacy of attention mecha-
nism for AD classification and obtained accuracy rate of 97.97% with 
higher specificity 98.17% for AD/HC. However, their outcomes are 
inferior in terms of both accuracy and specificity indicators for HC/MCI 
classification task. Kushol et al. [44] proposed an Addformer, combining 
frequency domain and extracted features of sMRI neuroimages for AD 
classification using ViT as the primary architecture. However, many 
state-of-the-art methodologies, including those mentioned above, rely 
on basic ViT backbone approaches for AD diagnostic classification, 
impacting the computational complexity of the model. In contrast, our 
approach incorporates fully automated convolutional attention in deep 
learning to identify AD stages with reduced computational burden, 
enabling timely AD identification without human intervention. Our 
sMRI-based convolution vision transformers yield promising results for 

Table 5 
Performance comparison with state-of-the-art machine learning and CNN methods for AD/MCI/HC for different models on Alzheimer’s dataset.  

Reference Methods Modality Subjects (AD/MCI/HC) AD/MCI/HC AD/HC HC/MCI 

ACC SEN SPE ACC SEN SPE ACC SEN SPE 

Liu et al. [59] MKBoost,SVM MRI 200/280/230 – – – 94.65 95.03 91.76 84.79 88.91 80.34 
Sun et al. [60] SVM MRI 137/210/162    95.10 93.8 83.80 70.80 72.10 69.10 
Lian et al. [61] Hierarchical CNN MRI 429/-/358 – – – 90.30 82.40 96.50 – – – 
Kang et al. [64] 2D CNN MRI 229/382/187 – – – 90.04 93.9 83.80 72.40 74.70 84.80 
Li et al. [62] 3D CNN MRI 330/299/299 – – – 93.20 95 89.80 80.40 83.20 78.60 
Liu.J et al. [46] Multi-layer NN MRI 90/136/266 78.02 83.21 75.32 – – – 84.65 82.35 79.50 
Liu.M et al. [63] 3D DenseNet MRI 97/233/119 88.90 86.60 90.80 – – – 76.20 79.50 69.80 
Proposed Method CViT(AdamW) MRI 315/370/390 92.07 95.43 92.21 – – – – – –  

CViT(AdamWGC)   94.31 97.14 94.11 95.37 91.09 1.00 92.15 89.92 94.56  

Table 6 
Performance comparison with state-of-the-art transformer methods for AD/MCI/HC for different models on Alzheimer’s dataset.  

Reference Methods Modality Subjects (AD/MCI/HC) AD/HC HC/MCI 

ACC SEN SPE ACC SEN SPE 

BraInf [8] distilling-ViT MRI 313/319/324 97.97 97.94 98.17 91.89 90.66 93.01 
Xin et al. [65] Conv-Swin Net MRI 336/-/529 0.939 0.925 0.947    
Conv-Swin [67] Conv-Swinformer MRI(Axial-Slice) 508/1412/970 0.9356 – – 0.7907 – – 
Addformer [44] Addaformer MRI 159/-/229 0.882 – – – – – 
Zhu et al. [66] DA-MIDL MRI 389/-/391 0.924 0.91 0.938    
Zhang and Khalvati [40] VViT-tiny MRI 180/-/214 0.72 – – – – –  

VViT-small   0.72 – – – – –  
VViT-Base   0.74 – – – – –  
CVVT-tiny   0.84 – – – – –  
CVVT-small   0.86 – – – – –  
CVVT-Base   0.84 – – – – – 

Proposed Method CViT(AdamW) MRI 315/370/390 – – – – – –  
CViT(AdamGC)   95.37 91.09 1.00 92.15 89.92 94.56  
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predicting AD progression in a fully automated manner, as presented in 
Table 3, Figs. 7, and Fig. 8. The proposed model, integrating an efficient 
version of vision transformers with a convolution block inside the main 
transformer, consistently outperforms previous studies in sensitivity, 
specificity, and accuracy. 

In summary, our convolution self-attention-based model exhibits 
optimal overall classification performance, surpassing both deep 
learning models and ViT methods alone for AD diagnosis. Our proposed 
model achieves an accuracy rate of 94.31% for multi-class and 95.37% 
for AD/HC binary classification tasks, demonstrating improvements 
compared to previous ViT-based studies. Notably, our model out-
performs Zhu et al. [8] in accuracy for HC/MCI classification. The 
confusion matrix of our model, illustrated in Fig. 8, showcases its su-
perior performance with an AUC of 0.96. 

These results affirm the efficiency of our proposed methodology, 
showcasing its effectiveness compared to the latest research utilizing 
ViT and neuroimaging for the predictive diagnosis of AD. Moreover, 
integration of IRU, LMHSA, and LFFN preserves both global and local 
information in sMRI with lower computational cost, making it a prom-
ising approach for diagnostic classification of Alzheimer’s and its clin-
ical application. 

5.6. Attention sensitive pathological brain regions 

Identifying the specific brain region that is closely associated with 
the predictions made by deep learning models is crucial in the context of 
computer-aided diagnosis. When it comes to the clinical diagnosis of AD, 
observing structural changes in the brain plays a significant role. In our 
study, we employ the Grad-CAM [57] technique to investigate convo-
lution and attention maps which brain regions the conv-attention layers 
of our model focus on to classify Alzheimer’s classes (Figs. 9 and 11). 
The depicted different slices highlight several locations that our pro-
posed method identifies. 

In Fig. 9(b), we compare the AD/HC classes within each marked 
location for convolution maps and Fig. 9(c) compare the LMHSA maps 
for AD/HC classes. Our findings reveal that main regions, namely the 
medial-occipital gyrus, superior frontal gyrus, third ventricle, putamen, 

thalamus, hippocampus, amygdala, medial frontal gyrus, superior tem-
poral gyrus, frontal lobe, medial frontal, ventricular, and occipital areas, 
carry the most informative features for our model’s predictions. Simi-
larly, Fig. 11 provides an overview of the related brain attention score 
corresponding to the AD brain sMRI regions for different slices on each 
attention head. First, we generate an attention map by aggregating the 
attention scores from the multiple heads of the self-attention mecha-
nism. This can be done by taking the mean or max attention scores 
across each attention head [68]. By examining the attention map or 
heatmap, we can gain insights into which areas of the Alzheimer’s brain 
sMRI are considered important by the model for making accurate pre-
dictions. Which provide a better understanding of the model’s 
decision-making process and potentially reveals regions of interest for 
further analysis and research. More importantly these identified key 
atrophic brain areas can help the doctor properly analyze and help to 
find the viable treatment for AD. These identified regions align with the 
findings of numerous previous studies on AD diagnosis [61,69,70], 
which further validate the reliability and effectiveness of our proposed 
model. 

6. Discussion 

For effective early support and treatment, precise diagnosis of Alz-
heimer’s disease is essential. Researchers have explored computer-based 
systems for early detection, with CNN-based image recognition widely 
used in medical diagnosis. However, designing an effective deep 
learning model for desirable outcomes can be challenging. 

In this study, our focus was on enhancing the accuracy of sMRI image 
classification for AD using convolution-attention features while mini-
mizing parameters compared to the original ViT models. Previous 
models sought to improve classification performance by increasing 
image size, attention blocks, and network complexity. However, vision 
transformer models often faced challenges with huge parameters and 
computational costs. We proposed a redesigned CMT network to lower 
parameters and computational costs for brain Alzheimer’s classifica-
tions. Our network comprises three-layer types: convolution, attention, 
and local feedforward neural networks. It applies the convolution 
transformer architecture in AD recognition, providing a new perspec-
tive. Experimental findings show our proposed model is more effective 
than well-known backbone networks in identifying Alzheimer’s 
disorders. 

The proposed architecture differs from the baseline ViT in several 
ways. Firstly, we introduce an improved variant of the transformer block 
with integrated IRU, LMHSA, and LFFN block to enhance local infor-
mation on brain sMRI. Secondly, the features from the first stage have a 
higher resolution compared to ViT, maintaining a resolution of H/4 ×
W/4.Thirdly, the method adopts a stage-wise architecture design, using 
four convolutional layers to gradually reduce resolution and increase 
dimensionality, allowing for the extraction of multi-scale features and 
reducing computational burden. To achieve this, we incorporated one 
standard convolutional layer with stride two as convolution stem and 
four CViT blocks with 4 output channels of size 64, 128, 256 and 512 
respectively. Each block consists of a depth-wise convolution preceding 
a point-wise convolution of size 1x1 with groups of similar size to the 
number of channels. The ReLU activation function and Batch Normali-
zation were applied after each convolution process in the block. A skip 
connection-inspired inverted residual convolutional element was also 
used in the model. The convolution filters’ dimensions were set to 3x3, 
and the number of blocks was set fixed as 3 for each block in the model 
with stem width 32, number of heads as 1,2,4,8, and reduction rate 
8,4,2,1 respectively along with expansion ratio as 4. This promoted 
feature reuse and decreased the model’s parameter count by ensuring 
that uniform weights distribution across multiple clusters of pixels in an 
sMRI images. Lastly, the proposed model replaces the class token used in 
ViT with average pooling for better classification results and in-
corporates a simple scaling strategy to preserve important features in 

Fig. 9. To demonstrate the advantages of our suggested approach, attention 
and convolution maps are utilized to highlight a particular area of the different 
image slice that provides information significant to the diagnosis of AD. a) Input 
AD sMRI images. b) Convolution maps for AD sMRI images. c) Attention-maps 
obtained through LMHSA for AD sMRI images. 
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sMRI data. These architectural differences outperform ViT in accuracy 
and computational efficiency, achieving a top accuracy of 94.31% on the 
ADNI dataset with fewer FLOPs compared to ViT-based models. 

In the ablation study, we explored the impact of number of block size 
to gain a better understanding of the efficacy of our proposed method. 
We observed that an AdamW with GC allowed our method to train the 
model more smoothly and efficiently as shown in Fig. 8(d) and perfor-
mance comparison in Fig. 10. To reduce the model complexity, we 
introduced the IRU, and LFFN with lesser number of attention block in 
our model to achieved better accuracy for Alzheimer’s dataset. By 
introducing IRU and LFFN inside architecture we get excellent efficacy 
for AD diagnosis (with reduced parameters 15.9 M and 2.2 B FLOPs) as 
compared to previous models for the same 224 × 224 input size. 

The main contribution of this article is the development of the hybrid 
convolution-attention model, an advanced deep learning architecture 
for efficient AD diagnosis using structural MRI data. The model in-
corporates representation inverted residual unit, lightweight multi-head 
self-attention, local feedforward neural network with additional depth- 
wise convolution and classifier modeling into a unified framework, 
addressing limitations of current computational and memory costs. We 
also incorporate the GC on optimizer for consistency and smooth 
training process to train the high dimensional sMRI data demonstrating 
the superiority of the proposed model in algorithm performance and 
various medical metrics. 

The practical implication of this research is that this model provides 
an efficient tool for diagnosing AD using sMRI data. With high accuracy 
in classifying AD and MCI compared to other methods, the proposed 
model can potentially assist medical professionals in accurately identi-
fying and monitoring AD patients. By leveraging the power of deep 
learning and advanced data analysis techniques, this model offers a 
valuable contribution to the field of neuroimaging and can aid in early 
detection and intervention for AD. 

Additionally, we investigated the brain regions that significantly 
influenced the predictions of our suggested technique. We identified key 
regions with the highest attention scores as medial-occipital gyrus, su-
perior frontal gyrus, third ventricle, putamen, thalamus, medial frontal 
gyrus, superior temporal gyrus, frontal lobe, hippocampus, amygdala, 
and occipital regions. Fig. 8 illustrates examples of sMRI scans for AD 
cases. The thalamus, known as the primary relay for sensorimotor in-
formation in the brain, is believed to play a crucial role in early-stage 
memory processing affected by AD [71]. Numerous cognitive pro-
cesses, including attention, spatial awareness, and long-term memory, 

are mediated by the medial frontal area [72]. In AD, there is a volume 
loss in the occipital area, which controls visual perception of things like 
color, shape, and motion [42,73]. These results point to useful areas for 
future research, and which can be more valuable for identifying regions 
of interest in clinical application (Figs. 9 and 11). Our model can be 
valuable for analysis of different brain imaging modalities as well as 
other medical images analysis. 

6.1. Limitations and future works 

Although our proposed method demonstrates favorable results in 
diagnosing AD, there exist certain limitations that require further 
enhancement in future studies. In the following sections, we outline 
these limitations and propose potential solutions to address them. 
Firstly, our current method utilizes 2D scan which may result in missing 
global anatomical information from other brain regions, that could 
affect the accuracy of our predictions. To overcome this limitation, 
future work should focus on incorporating 3D architectures and seg-
mentation techniques to accurately identify and include these regions in 
the analysis. Secondly, the model’s performance needs to be validated 
on a wider range of datasets to assess its generalization capabilities. 
Currently, the evaluation is based on a specific ADNI dataset, and it is 
important to ensure that the model performs consistently well on 
different datasets with varying characteristics, such as imaging tech-
niques, demographics, and disease prevalence. In contrast to using a 
single MRI modality, utilization of multimodal imaging data has the 
potential to provide a richer set of information to improved classifica-
tion performance. Hence, future studies will focus on incorporating 
multimodal brain data, including functional MRI (fMRI), Positron 
Emission Tomography (PET), and other clinical features. By integrating 
multiple imaging modalities, researchers aim to enhance the discrimi-
native power of the models and achieve even better performance and 
expected to provide a more comprehensive understanding in the clas-
sification of AD related brain conditions. 

7. Conclusion 

In this research article, we introduced a highly efficient model that 
utilizes the convolution self-attention mechanism for classifying MRI 
data related to AD. By employing the convolution and self-attention 
mechanism, we were able to significantly reduce computational 
complexity, allowing for the application of self-attention to high- 

Fig. 10. Visualizing models comparison in bar graph including different classification parameters for AD/MCI/HC multi-class classification task.  
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dimensional sMRI data. Additionally, our model incorporates an inver-
ted residual unit layer that performs feature down-sampling and 
retaining important features while minimizing computational costs. 
When evaluated on the ADNI dataset, the proposed optimized archi-
tecture achieved impressive classification accuracies of 94.31% for 
multiclass classification, 95.37% for AD/HC and 92.15 % for MCI/HC 
classification, surpassing the performance of other state-of-the-art 
methods. A series of comparison studies on baseline models further 
demonstrated the efficient learning capabilities of the optimized 

architecture when applied to brain sMRI data. This research introduces 
new insights and methodologies for leveraging deep learning in the 
study of Alzheimer’s diseases. 
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